SOLUTION OF SYSTEMS OF NONLINEAR BOOLEAN EQUATIONS
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولSolution of systems of Boolean equations via the integer domain
This paper presents a new method for solving systems of Boolean equations. The method is based on converting the equations so that we operate in the integer domain. In the integer domain better and more efficient methodologies for solving equations are available. The conversion leads us to a system of polynomial equations obeying certain characteristics. A method is proposed for solving these e...
متن کاملSolution of Nonlinear Equations
Suppose that f is a continuous function on the interval [a, b] and f(a)f(b) < 0. By intermediate value theorem, f has at least one zero in the interval [a, b]. We next calculate c = (a + b)/2 and test fc). If f(c) = 0, then c is the root and we are done. If not, then either f(a)f(c) < 0 or f(b)f(c) < 0. In the former case, a root lies in [a, c] and we rename c as b and do the same process. In t...
متن کاملANALYTICAL-NUMERICAL SOLUTION FOR NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE
Using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of Hammerstein type . The mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). The procedure of this method is so fast and don't need high cpu and complicated programming. The advantages of this method are that we can applied for those integral equations whi...
متن کاملSolution and stability analysis of coupled nonlinear Schrodinger equations
We consider a new type of integrable coupled nonlinear Schrodinger (CNLS)equations proposed by our self [submitted to Phys. Plasmas (2011)]. The explicitform of soliton solutions are derived using the Hirota's bilinear method.We show that the parameters in the CNLS equations only determine the regionsfor the existence of bright and dark soliton solutions. Finally, throughthe linear stability an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Apllied Mathematics
سال: 2021
ISSN: 1311-1728,1314-8060
DOI: 10.12732/ijam.v34i3.13